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of -V- for .the BLUE of estimable linear parometric functions

and thg.iRT of a linear testable hypothe81s under (Y XB

'qzl) to“f%maln the same under (Y XB, o V) are well known

-1n the literature (T. Mathew and P. Bhimasankaram, Sankhya

(A), 1983, 221-225). In this paper we derive robust optimum
invariant tests of such structures of V based on data generated
for a fixed design matrix X. Aspects of null, nonnull and

optimality robustness of the proposed tests are discussed.
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ROBUST OPTIMUM INVARIANT TESTS OF COVARIANCE
STRUCTURES USEFUL IN LINEAR MODELS

1. Introduction.

Iﬂ\this paper we investigateQ}obust optimum invariant
tests of some covariance structures that naturally arise in
the context of robustness study in linear models.  The
concept of robustness in connection with linear models is
entirely different from the notion prevalent in multivariate
analysis (vide Kariya and Sinha (1985)) and refers to the
structures of X and V in the model (Y, Xg, oZV) in contrast
to the distribution of Y. Here ¥ is known as the design
matrix and o2V the variance-covariance matrix of Y.

. é):- . Si‘
. To describe this concept, let (Y, X8, QZI) be the

assumed (probably incorrect) model while (Y, Xg, 02V) be the
correct model, resulting in the specification error in the
dispersion matrix. Then it is well known that the BLUEs of
all estimable linear parametric function Af ;;éain the same

under both the models if and only if the following condition

holds on the structure of V:

"
©
N

<« X’V (1.1)

where Z denotes a matrix of maximal rank satisfying the

[
condition 2°X = 0. This result, in various equivalent forms,

appears in Rao (1967), Zyskind (1967), Rao and Mitra (1971),
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»

gf Mathew and Bhiq@sankaram (1983), and also in Sinha and

?

§ Drygas (1983). Our object is to test thf null hypothesis
b AV T2

that V possesses the structure satisfyi : based on
samples on Y under the model (Y, XB 02V) for a fixed design

hJ

)

‘: bz(": ¢ \ AT

J matrix X. This hypothesis is of considerable interest as

= its acceptance greatly simplifies determination of BLUEs of

3 estimable linear parametric functions. .. -
o Below we work with a canonical form of this problem
L

which is now developed. Let ¥Y: n x 1, X: n x k with rank (X)
=r < k, so that X = x°C for some X°: n x r of rank r

and for some C: r x k of rank r, Consequently the matrix

Z: n x (n-r) which satisfies Z’X = 0 also satisfies Z’%X° = 0.

It is then clear that the condition (1.1) is equivalent to

"
s ,
X x°'vz = 0 (1.2)
5 Defining Y(1) = Z‘¥ and Y(2) = XyY and making the 1l:l
é transformation Y -+ (Y(l), Y(z))f it then follows that the
condition (1.2) is equivalent to testing the hvnothesis
1’ that Y(1) and Y 2) are uncorrelated. If Y is assumed to be
? normally distributed, this is the familiar problem of test
3 of independence of two random vectors Y 1) and ¥ 2) with the
E added restriction that EY¥(1) = 0 since 2°X% = 0. This
- problem is analyzed via invariance in the next section where '
‘ normality of the underlying data matrix is replaced by an
E elliptically symmetric distribution. 1
B ¢
Y e o e e R e TS e e e A e S D e
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There is another form of robustness in linear models
in connection with tests of estimable linear parametric
functions. To describe this briefly, consider the problem
of testing HO: A? = 0 under the assumed model, (g, XE, 021),
02 unknown, and ¥ is distributed normally. Here AR is
estimable and hence testable. It is well-known that the
F-test based on the ratio of sums of squares due to the
hypothesis and due to the error is both LPT and UMPI under
a suitable group of transformations (vide lLehmann (1959)).
The answers to the question '"Is the F-test (given above)
under the model (g, XE, 021) still LPT under the correct
model (Y, Xg, 02V)?” have been put forward by Khatri (1980),
Ghosh and Sinha (1980) and VMathew and Bhimasankaram (1983).
It turns out that the answer is in the affirmative under
the following condition on V;
= a(l - P_ ) (1.3)

X ) X

(I - Pxyvwr-vp
o o fo)

for some a > O where P, = A(A’A) A', (A’A) is a generalized

A
inverse of A’A, and XO = ¥(I - aA7a).

The second object in this paper is indeed to test the hy-
pothesis that V in the model (Y, X8, 02V) possesses a structure

satisfying (1.3), for a fixed linear parametric function A‘B,

N
based on samples of ¥ for a fixed design matrix X. Inci- Eg

dentally, if we demand (1.3) to hold for all estimable A‘?, i siods
it turns out that V = I is the only matrix satisfying this e
condition. ———

Avanzbiity Codes




'.
K As before, here again we work with a canonical form.
} L]
§
_.. Writing I - PX = DD” for some D: n x y of rank y =
: o

. rank (I - Py ) and noting that D°D is p.d., it follows easily
by that (1.3) is equivalent to

oA

o2

[l
' D’°VD = aI, for some a > 0 (1.4)
;
.‘Q Defining now W = D°Y, it follows that (1.4) is equivalent

19

K to testing the sphericity of W with the added restriction
h/ (s that E(W = he = hi llows

\ (W(1y) 0 where @ (W(l)~(2)) This fo ws from
EE the fact that the range or the column space of D contains a
subspace which is orthogonal to X. This problem is taken up

:g in section 3 via invariance with normality of Y replaced by
:fj elliptical symmetry of Y.

2

~ 2. Test of Independence

‘J

5

‘5 ‘ The canonical form of this problem is as follows. Based
i"

? on a data matrix Y: n x p [ X : 2 ] obeying the model
<~ nxpl nxpy

~

\-

o

I

\J

In) P

h Y =[1up" : 0] + Uzl/z , ueR l . 1 p.d. (2.1)
b

'S

L

0

[ »)

e where U has an elliptically symmetric distribution with

. density

~‘

"'
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;' £(u) = q(tr u‘u) for some q: [0, ®) » [0, =) (2.2)
k

N

L}

e such that | q(tr u“u)du = 1,

. nxp

& R

)

A we want to test the hypothesis Hg: le = 0 vs. Hy:

; 1., # 0. Here ] is expressed as

“ 12

: I = zll 212 P1 . The p.d.f of Y can be written

! Lo Iaaf P2
iy, P1 P2

f". as

°

»

J‘

. EYiu, 0y = 15172 ¢ qreel X - 107,2) (% - 1wn,7)) (2.3)
)

.\

™ When y = O or the mean of Z is not known and Y is normal,
e this is the usual problem of testing independence of two vec-
k<

; tors for which optimum solutions do exist in the literature.
4

For example, Schwartz (1967) established that the test based
-1 -1 . .
é on tr sxzszzszxsxx is IBI in general. For nonnormal Y, its
ﬂ null and optimality robustness under certain conditions on

Sl

q are established in Kariya and Sinha (19¢85). CCf course,

when Py = Py = 1, this test boils down to the ordinary pro-

;.l
X dut moment correlation test and becomes UMPI. PFere S
\
" denotes the sample Wishart matrix based on Y and S is
13
*l
\l
\l
5
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decomposed as S = Sxx Sxz

Szx Szz

P1 P2
We shall see how the solution changes in our problem because
of the information that the mean of Z is C. V¥e mention
that under the assumption of normality of Y, this problem
under a slightly wider framework appears in Faton and
Kariya (1983).

Before we discuss this problem from the point of view
of invariance, let us quickly look into the LRT. Define
:px 1, z: p, X 1 and S in the usual fashion and

1
decompose S as S = | Sy Sxz

Szx Szz
as mentioned before. The likehood function (2.3) can be

written as

X-u
E(u flY) = 1717 2q(n - e]7Y Y((X-p)z') + ey ts)
4

Assuming that g(°*) is a nonincreasing function of its

~

argument, it follows that the MLE p of p satisfies x - y

211 11,2 = 0. This yields

"\.’x"\"---." T ..-‘; AR ". AT A A




sup E£(u, J1¥) = 1517 2q(n tr 2;; zz° + tr 1 1s) (2.5)
I " ) o

-~

Using (Rao(1373))

)

A<

W -1 _ -1 -1 -1 !

¢ In Lo I11.2 { -111.2012003 | (2.6)
; =1 -1 -1 -1 -1 .
kit Ion la ’222221211.2|222+222221211.2212222,

.

i

. where

Ky

)

3 .

& 211.2 = z11 - z12 Z22 z21 '

%

% and

£

N 151 =15 ) I

~ 22 11.2

: we get

4

Ca

o

NG
W

a tr J7ls + noer §32 227 = er Jo5 (S;; *+ nozz7) + (2.7)

-1 -1 -1 -1 -1
tr D37, 2080~ 120225, = Syzlazlay * 1120225,.023001)

‘-.!.-.0}:'.'




While maximizing the likelihood function with respect to Z,
we consider the reparametrization J,,, ],, , and 15315, = ¢
(say). The expression in (2.5) in terms of these new

parameters can be written as

sup £(u, Jly) = (] 1"™2,1  ("vV2 ( 2.8)
" - 22 11.2

~

PRI

- -1
+(E=5,,5,2)5,, (5=

-1 -— -1
q(tr222(522+nff )+trzll.2(SXX' xz-zz

4

Clearly this attains its maximum with respect to § when

= -1 3 i
13 szszz resulting in

sup £(y, Logr 111 00 Ely) = 15,172 01, 172 ( 2.9) .
! 4

-1 -=. -1
q(tr z22 (szz * nzz )+ tr zll.zsxx-z)

o PR I SR )

Finally, using a result of Anderson and Fang(1982) we know

that if g is nonincreasing and differentiable the MLLs of 522

and 211'2 are given by
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2. 211.2 = xmax(q) Sxx-z

‘ where Apax(g) is the solution of the equation
by
L \

aB+Fad=o

*
N
Ny -X

. For example, if q(x) = e 2 (q) = 1

. ’ ' "max n'
5 .
s
o
l L
RS Therefore, we have,
N
X
W
» - \-n ==. . -n/2 -n/2
0 iu f(B'E’ZZZ’le.zly) xmax(q)lszz+nff ! stx-zI )

’

% -1 -1

F% UP A pax () * Porpay(d)) ' (2.10)
b~ - 4~n ==, -n/2 -n/2 -1

:E = Apax(d) I1S,, + nzz”| 1Sy y.p! Q(PAg;,(9))

¥ '

: Analogously, under the null hypothesis Hg: 212 = 0, we get,
K

"y
o
e -n -n
- ==, 2 -

- sup f(u.le)=Xm:x(q)lSzz+nzz [ zlsxxl q(pkm;x(q)) (2.11)
:: I%IZ
:' 0
A
\} su ‘. AR AT J A P LS f.'f,‘ RO PLL OGN N AT MNP A ST I B AT NP AN " . NN N N
L,J_ ‘ <"’{k§‘!'ﬂ ? zf") " 5 ‘."\ o’ a0 e \$\¢ "o ‘ ., X A \‘:(.J‘“ﬁ
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; yielding the LRT statistic as (ISxx.zl/ISxxl}n/z. In the above
E we have assumed that q satisfies q(px;;x(q)) < @, 0 < Amax(q) < ®,
R
Ky Remark 2.1: It may be noted that the LRT derived above is
:? just the one without the information that Z has mean zero
" and so it ignores this information. When Y is normally
ri distributed, this is derived in Lee and Geisser (1972). As
e noted in Eaton and Kariya (1983), this is rather surprising.
K Our derivation of the LBI test of Hg: ];, = 0 versus
Hy: 212 # 0 under the model (2.3) parailels a similar
ff derivation in Kariya and Sinha (1985) where Z, like X, also
k is assumed to have an unknown mean matrix éf the form 1¢°
Y for some § ¢ RP2, wWe restrict our attention to the
! likelihood function given in (2.4) and without any loss of
L generality due to the invariance of the problem assume that
- a) x - p =0 in(2.4) and b) ] is of the form
: 1(8) =[1p; I | where
5 r*  Ip

I = (4, 0): p; x pp with 4 = diag(81, €2/, Gpl). Here

without any loss of generality p; < p2 is assumed. The

.8 a9 2D

result a) follows upon noting that the testing problem

remains invariant under the transformation x » x + § for

o ""l

£ € RPl, that the left invariant measure on RPL is Lebesgue,

-
-

and that the result of integrating out § in (2.4) after

the substitution x » x + £ (this is while invoking Wijsman's

P TN
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o
2
:ﬁ Representation Theorem) is nothing but to put g - p=01in
5 .
o) (2.4), multiply the right hand side of (2.4) by
¥
i
K o~ 'zll 2Il/z, apart from a constant, and replace g by some
Y. ) g: [0, ») » [0, ») satisfying a similar integrability
I condition as q. The resultant expression for (2.4) is
' -~
- then given by (writing q for q)
&
)
FLm
o _ -n/2 -(n-1)/2 -1—. -1
o E(YI])=kI],,l 11112 q(n trj,5zz"+tr] °S) (2.12)
2
’
X
:..,‘-
-
0
with § = I, r » where k is a constant.
1
h
\v r- -
L Py
W
1 Y
" In this setup the problem is to test Hp: A = 0 versus
d
-S Hy: A # 0. It is easy to see that the testing prolem in
= this somewhat reduced form remains invariant under the group
é G of transformations
~
.‘;
)
&
)
g G =A = [%1 O'} + A, € GL(p.), with the group action
o A
A 2
o
"
! L]
3¢ S+ ASA®  , zZ =+ A2 (2.13)
(s - -
S
Al
Y,
~ e
‘f‘z{}h“t :' ‘_:kz) l d\f\?\f\lk‘ f\J~Jﬁf%I NN ADENS (_"%”a“}“‘"¢:i - e..\.:f:f\J o \e‘~‘%“a"~‘:“f_
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A left invariant measure on G is v(dg) = vl(dAl)vz(dAz)

- A g W

'(Pi+l)/2 )
with v, (dA.) = |A.A7| , 1 =1, 2, and the inverse of
i i i%i -
n n+l ~.
the jacobian of transformation is given by IAlAll2 IA 2 2

Using Wijsman's Representation Theorem (1967), the ratio

dpA * :
rA(y) = gp_ is obtained as
raly) = .
u
-% n-gl-l n-2-p2 N
I 11l q(ntrz’ AZA 2z + tr) ASA )IA 1 A A2| dAldA B
. GR(p,)xGL(p,)~ 2 N
-p; -1 n-p, :
I t A + -1 » 2 3 2 'T
q(ntrz“AjA,z + tr] "ASA ) 18,471 la,ajl dA.dA
GR(p,)xGL(p,y)~ 2 172
(2.14) "
~
Remark 2.2: It is clear that an optimum test of HO versus f{
Hy] is obtained by examining the behavior of the ratio ry(y) ?
as a function of A. In the special case when z is absent in ix
this ratio, it is proved in Kariya and Sinha €1985) that there 3
exists a UMPI test if P, =Py = 1 and an LBI test in general. 3
- 3!
However, with the presense of z in this ratio, there does N
not exist a UMPI test even when P, = P, = 1. This is
.
'.Q
A
=
~

S LS R O R R R NS LT e L JSLTS PN \\"\\‘-\ T RN N N
Ve 1RGNN AT AN ¢~z%:*g o ﬁr St {rd ‘ \fquf f~ < \qu AN N o
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observed in Eaton and Kariya (1983) when Y is distributed

_ﬁ normally.
jc Now to derive an LBI test, we proceed as follows?
- Straightforward computations yield
_'4
. -1 -1 =1l PR § (2.15)
. = |I r =|I_ +P(I_ -T“T)""r” =-IL(I_ -T°T
X ) P Py ( P, ) ( P, )
- -l - P "1
r- I -(I_ -r°r)"°r I_ -T°T
. pz ( pz ) ( pz )
N
& = |I_ +A(I -A’A)'la‘ -(Aa(I —A‘A)'lz 0)
. P P, Py
N Z(r. -a8°) " tac (1_ -a-a)"1L 0
o) o} 1
L pz"'pl
'l
&
Cd
(4
L ¢
y Py
| and with T = (A:0), and [1a11% = | &% sma1l,
A i=1
4 (I_ - aa-) L = (1_ - a°8)" Y = 1_ + ar” + o(11A11%) (2.16)
’ P P Py
p
y
(I - 88°)7Ya = 4 + o(11811%) = a1 - a8yt
pl P
'd
' I+ A(I_ - A°A) YA = 1_ + aA° + o(11a11)2
P1 P Py
¢
’
v
“)
Y
v
3
. AR A A R e P T A TRt T e
‘ ." \"q. '-:,'-. ‘ ‘ a™m '-. Y . e 4 » [ e i . * S R S . . .
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Also we have,

tr ASA® = tr AlSllAi + tr A,S,,A; (2.17)

so that

trn 2z AZAZE + tr ASA” = tr A1511A1+tr A2(822+n3§ )A2 (2.18)

Finally, using (2.15) and (2.16), we get

“op s = -1 -~
ntr z°ASA, z + tr [ ASA (2.19)

- » e - -1_ -
= [tr A;S; A{+tr A (S,,+nzz")AJ] + tr(] I,)ASA

while
er(It-1_)asa” = tr(J7t-1) Fas,,a: A.S,.AZ (2.20)
P D 1°11%1 1°12%2 .
AyS71A1 B2S2287
R e e g N e e L e S 0 e, g L L el e

-----
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» T 2 P P
tr  {(Tas” -r T + or(l1411°)) T[a;s;,A]  A;5),a3]8
-r r-rj R,S, A7 A,S,,A5
= tr AA AlsllAl - 2tr PA2 SzlA1 + tr I°T A2822A2 +

o (llAllz) (tr ASA”)

where o*(|1A112) is a matrix of order p x p all of whose

elements are o(l14l12). We now make the transformation

1/2

1/2 - putng -
AlSll Al ' AZ(S22 + n zz ) A2 (2.22)
This reduces rp(y) to
raly) =
s
2
131 g(tr A AZ+trA AZ)+trAA°A,AZ-2trTA.WAZ +
Gz(pl)xcz(pz)l 1 272 1™ 2"
n—pl-l n-py
trT“ra VA‘+o(IIA||2))IA A’ 2 |A ALl 2 4a,da
272 171 272 1772
n-pl-l n-p,
- L4 rd 2 - 2
q(tr AAZ+trA AZ)|A,A [A,AZ | dA,da
Gl(pl)xGR(pz)l 1 2772 171 272 17772
) A;'. . i'-_’;f‘:::‘ _/A:'a", BN N A A AN .:J:.: '.‘::"J".a .. '\": 'I_.;\.:-.;;. \'. .’\". P ':.:.:\:;\';'.'- ;,.:,. ;\;\; L
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where
V=1(Sy, +n ?g')-l/z Sp(Sy, *+ 1 gg”-l/z
W= (S, +n gg"-l/z Szlsii/z ’

and the term o(!1A112) is uniformly so in Y. This is because
both V and W satisfy ||W'WI| <1, |IV|] < 1.

We now expand the numerator of rp(y) around A = 0 using
standard Taylor expansion. Towards this end, we assume that

q is thrice continuously differentiable and

n-l-pl n-p,
(i) . . . 2 .y 2 . 2041
[1a % (er Aja+er A,A5)(1a, A7 1a,A37 | ltr PA,QAT|
(2.23)
rd » -~ L4 3
ltr PP°A|AT+tr RR7A,AIT dA dA, < @ |
for & = 0,1, P: P, X Py Q: Py, X Py R: Py X Py '
: i P
where ql(x) = 9—3{51 ' i=1, 2, 3. ‘
dx
Then,
q(tr AjA] + tr A,AJ) + tr BA°A,A7 - 2tr T A_WA] + (2.24)
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tr T°T AZVA5 + o(IIA|I2)1

= qtr AJA] + tr A,A5) + 8(A: :8)qt) (er alA

171

1 1 + tr A A2)

2 {8a:0)}2q B (er aja+er ALA5) + 3 {8(A:n)}?

o=

1

(3)[(tr AA7 + tr A A ) + (l-a) 6(A:A)] , 0 <a <1

1 l

- Sl el

where

. _ _ 2
§(A:4) = tr AA° AlAl 2¢tr T A2WAl+tr r“r A2VA2 + o(llAll®)

To evaluate the integrals of these terms over GL(p]) x
G(p2), we note the fact that the integrals of odd functions
of A] and Aj; are zero because the integrals are finite by

our assumption (2.23). Moreover,

A T XV, e,

(tr T°T A,VA; yqt i) (e AJA + tr A,A3) { 2.25)
GL(p,)xGL(p,)
n--l-p1 n-p,
IAlAll IA 2 dAldA2=cl(q)(trF P)(trV)=cl(q)(trA A)(trV)
:‘C :‘..;i .’. ;;-ﬁé"‘;";-".-;i:':;i ':' ) ':- :- ‘o "r:':':.-: . . X ,"f 7 :/‘ ‘: T PR *’3\; ".:\:;\;\:":-':-"-:"J";“;‘J \;‘..r\. ~5 ‘~-“ -
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3 where

1 . (1) . .
0 c,(q)=——— [ (trl1_ :0]Aa,A5[I_"7)q' "’ (trA AT+trA Aj).
P 177 P1Py Ga(p,)x6e(p,) Pl 272\°py 1717 r2m2
3 0
W
(2.26)
L n-1-p; n-p,
~ . 2 2
~ |A A7 |AA7 dA,da,
E,
.,
-~ and
5 2 (2
- itr T A Was)2q{?) (er aa7 + tr ALAT) . ( 2.27)
y . 2""1 1°1 272
5 G2(p, ) xGL(p,)
e,
3% n-1-p; n-p,
.u - 2 g 2 - - 2\ = 4 -
lAlAll IA2A2| dAldAz—cz(q)(trF T)(ErWW™)=c,(q) (trA”A) (trWW")

R X

% where
o
b
l
L,

)

o

"4

|

4

a e 4‘-0 .'- o

'._.,-.‘ ety '.'-.‘-
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e, lq)=—s [ ter (1) :00a,[1) TAD) %" ?) (era al4tra,as)
Py G&(p )xGi(p,y)7L P1
0
n-1-p, n-p, (2.28)
. 2 -2
|A A7 |A,A7 dA,dA,

(2.25) and (2.27) can be proved along the same lines as

in Kariya (1978), Eaton and Kariya (1983), and Kariya and

Sinha (1985). The expressions for cq and Cy and Y is :

normally distributed appear in Eaton and Kariya

. * n * n{n-1)
are by ¢, = - —, = .
given by ¢, b, Cqy B, D,

Additionally, we get

[ (tr 84°A A7+err-Ta,vA3) %q(?) (cra aT4era Az) (2.29) :

GL(p;)xGi(p,) : ;

\

n-1-p, NPy . ]

.2 .2 2 '
|A,A7l lA,AZ] dA,dA, = o(lIall%) ;

rd P . E -~ -» 2 (2) P - N
(tr MA®A)AT+ErT“TA,VAS) (trTAWAT) “q ' (trA A+ErA, A7)

GL(p])XGL(p,)

(. 2.30) ;
n-1-p; n~P :

(ALAZ1 2 |A.AZ] ? dA dA, = o(l1a1%) ;

11 2772 172 !
\
q . 1
L A A T i e S e a4 R S S S
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and so on. These results follow primarily because V and W
are bounded in norm as mentined before and the integrals
involved are finie by our assumption ( 2.23).

We are now ready to collect all the different terms
arising out of the integrals of the expression in (2.24).
A straightforward computation shows that the ratio rp(y) in
( 2.22) is given by

ry(y)=1§17"/2

[l+(trAA‘){trV)cl+c2(trww‘)}+o(llAl|2)] (2.31)

= 1+(tr A0") (e (tr V) + c,(tr wW*) + 5} 4 o(11a11?)

since

l{l'“/z = IIp - Aaac1TV2 2 % tr AAT 4+ O(I|A||2)

A simple application of the Neyman-Pearson Lemma then

yields the following result.

Theorem 2.1: For testing Hj: 212 = 0 vs Hy: 110 # O under
the model (2.1)-(2.2), the test which rejects HO for
large values of cj(qg)tr V+ ca(q) tr WW” is LBI for a given g

satisfying Assumption (2.23).
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Remark 2.3: When V is absent, the LBI test statistic coincides
. . -1 -1 . -

with the popular expreSS}on tr 822821811812 given by Kariya and

Sinha (1985), and represents a robust LBI test for all q satis-

fying Assumption (2.23). When V is present but Y is normal,

this expression is the same as in Easton and Kariya (1983) (their

equation (4.6)).

Remark 2.4: The 1BI test statistic derived for a specific q

remains robust for q ¢ Q, a class of densities satisfying
c,(a)
Assumption (2.23), whenever E;TET is a constant, independent of
2

qg. It is easy to verify that for normal variance mixtures
- -%tr u'u/w

= € i by
f(u) Jo (2n)np/2wnp/2 dG(w), c,(G) and cz(G) are given by

* *

cl(G) =cy, cz(G) = Cg, independent of G. Hence the LBI test

is optimality robust at least for arbitrary normal variance mix-
ture family. The null robustness of the LBI test in this case

follows easily from Kariya (1981).

3. Testing Sphericity

The canonical form of this problem is identical with that in
Section 2. However, here we are testing HO: Z = 021p versus
le Z # czIp, 02 > O unknown. When the mean of X is also zero or
the mean of Z is unknown, this is the well known problem of test-
ing sphericity for which optimum tests are derived in Sugiura

(1972) under the assumption of normality of Y, and in Kariya and

Sinha (1985) under a more general distribution of Y. Here, as in




Section 2, only one of the means is unknown and we shall see the
solution changes drastically.

Before we employ the principle of invariance in an
attempt to derive an optimum invariant test, here also
we first derive the LRT. The likelihood function appears in
(2.4) and its unconstrained supremum is given in (2.10) of

2 2

Section 2. Under the null hypothesis Hj: ] -~ o 1,007 >0

unknown, (2.5) reduces to

sup £(u, o’ly) = (o) "®/2q(tr(n 227 + 5)/0%) (3.1)

1)

Finally, using a version of the same result by Anderson and
Fang(1982) mentioned in Section 2, we know that if q is

nonincreasing and differentiable the MLE of ¢2 is given by

02 = @(g) tr(n zz° + s)

where Q(q) is the soclution of the equation

For example, if q(x) = e
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Hence.

sup £yl 1={ 8 (@} erin 7 T e gy a2
u,o

Ho
Comparing (2.10) and (3.2), the LRT criterion X is

obtained as

[Sxxez! 15z2 + 0 227 12
Aa | g p] (3.3)
{tr(sxx +S§,, +nzz ) }

Here also we have assumed that Amax(q)q(pxmax(q)) < @ and
ke
8(q) q(e(q)) < w

Thus the LRT criterion remains robust as long as q is
nonincreasing and differentiabile.

To derive an optimum invariant test, we note that the
testing problem Hg: § = ¢2I versus Hy: § # o2I, 02 > 0,
unknown under the model (2.1)-(2.2) remains invariant
under the group G of transformations G = Ry X rRP1 O(pl) X

O(pz) acting on Y as

g(Y) = gl(Xx: 2] = c[(XHl +187) ZH,] (3.4)

-

M, ¥ N‘-\\ "y LR AL S L S N Nl S N L T Wt S _\'\ ‘‘‘‘‘‘‘‘‘‘ . ‘.\‘..ﬂ.
uu‘.‘ z-f‘,,.if\lf\l‘ : AN ST .-*.--.-...'.'..-
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3

T -

for g = (¢, 8§, Hy, Hp)eG. A left invariant measure v(dg) on
! G is given by %E d§v(dHi)v(dH2) where d§ is Lebesgue on RP1
and v(dHj) is the invariant probability measure on O (pj),
i =1, 2. A straightforward calculation shows that the ratio
dpg /dPg of nonnull to null distribution of a maximal invar-

1 0
iant T is given by

dP:‘; gLl § -np
X "El = {71 2 |222|‘l/2 J (1+F) 2 v(dH;)Vv(dH,) (3.5)
] dPHO 0(pl)x0(92) :
1 g
2

where
f tr({’l- I_ )HSH” + tr(z-l - I_ )H,VH] R
X, _ pl 22 p2 272 :
’ F = €t S + tr V (3.6)

and

~ o~

R YN

V=nz2z" , H= [Hl o) : pXp (3.7)

We note that when V is absent in (3.5), the ratio boils \

down to the familiar expression (Kariya and Sinha (1985))

I S PP
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dp

Vs

Ie( )(1 + F*)"PP/2 (gn) (3.8)
P

3

where .

br(f7! - 1_)HSH
F* = tr S‘P and H e 0(p)

However, in our problem, because of presence of z
and the structure of the joint demnsity in (2.4), H has
to be taken as a block orthogonal matrix given in (3.7)

above.

Remark 3.1: It is interesting to observe that the ratio

T
dPH

Tl in (3.5) is independent of q. This implies that any
H

dp
0

null robust invariant test is automatically nonnull robust.
Also, the optimality robustness of an invariant test follows
trivially.

The crux of the problem now is to expand the R.H.S. of
(3.5) in § locally around the null hypothesis Hjy. Because
of the invariance of the problem, we assume without loss of

generality that | is of the form

RO ,.

%xf;a; {(;a'z'a'/’ 'f{f{f{f{ RSt fa'a’a‘:‘ -~ r a - I OGN
. S
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ug
)
\°
A
"l
sy
:u;’:: i = Ay 212 »Aj = diag(My) , A, = diag($§;) (3.9)
]
i Ion A
‘l
L

s
-y and that the null hypothesis is specified by Hg: | = Ip.
'’

';.j Local alternatives are fixed by choosing € > 0 small and a
= suitable matrix A4 and setting | = Ip + €A. Writing

‘

" A =1d)) a121

5 421 822

o
_ with Aj; and 43, as diagonal matries, we get A = Ipl + edy11.
;; Az = Ip, + €b22, I, = €812 and J,; = edp1. This gives
o
2>
:z_‘
’ "l _ - 2,2 2

. Al = Ipl eAll + € All + o(e”) (3.10)
pr\

e

*l
R

-1 _ _ 2,2 L2

P A2 = Ipz 5A22 + € A22 + o(e™)

-3 -1 -1 _ 2 -1 -1

: (A = i85 L) 7 = (Ip * €811 7 € 81285 85))
554

\I

Y,
'ﬁ = I - g + ez(A2 - 4,,4,,) ¢+ 0(82)
X P, 11 11 T 812822
I.'

o Ag S Ay - DAL TS a0t = e2a,,8,, + o(e?)
,{;’ 2 L2171 1272 ¢&21 1272 21712

-

-1 -1 -1 2 2

N My lanth)m Lighylay) 7 = €dgym €T (8y0y % Byy8y ) t0leT)
A

25
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Using (2.6) and (3.10), the expression for F in
(3.6) is simplified as

- -1 -1 . -1 .
F = (trsS+trv) ~{tr(] I )HSH® + Er(l,; - Ipz)H2VH2} (3.11)

-— _l_ Ld T
= (trS + trv) “{-eltr A ) H Sy H] + £r B,,H (Sy,+ V)H]

rd 2 2 r 4
+ 2 tr A12H2521Hl] + € [tr(All AlelelslHl) +

2 - .
+ tr A22H2(822 + V)H2 + tr A21A12H2522H2 +

. 2
* 2 tr(Ayply) * 8p18)))H S pHY) + oo ()

where the last term oy(ez) in (3.11) is uniformly o(ez) in y.

We now use the following facts (Kariya ¢1985)):

(a) I tr (AQBQ”) v(dQ) = tr A tr B
O(p) D

2 2
-y 2 _ 3(tr A%)(tr BY)
(b) Io(p)m AQBQ") v(dQ) S+ 1) ,
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(c) / (te AQBQ')3(1+e trAQBQ‘)'Y'3v(dQ)=o(trAz)-(tra3)

Ny -
™ o(p)
]
al
"n
\\
- (d) J  tr(aQ) v(dQ) =0
.. o(p)
<
‘ for 0 < 6 <1, vy > 0 and A close to the null matrix in (c). The
; terms o(tr Az) in (¢) above is uniform in the elements of B.
¢
.;\ We are now in a position to evaluate the R.H.S. of
‘E (3.6). Expanding (1+F)-np/2 as
N
% |
2. (1+4F) TP/ 22 1oypay(y+1)F2/2-y(y+1) (y+2)F3 (1+6F) Y736 (3.12)
-
3 where 0 < 8 < 1 and Y = np/2, we compute, using (3.1l1) and
L4
o the above facts,
.
L
'.
7 F v(dH,) Vv(dH,) = (3.13)
. o(pl) X o(pz)
-
o . (er 8;7)(tr Sy,)/p; + (tr B,,)(tr(S,, + V)/p,)
_ tr S + tr V
“
>
58
‘
AN
™ trsS (S V) (trad,,A,,)(trS,.,)
L
s 2 _ 11 2 23V 21°12 22
d , {tr(All A12A21’} N —S==+(trad,) (tr o )+ B,
e vt tr S + tr V ]
8

» _-

PR Lt e L e e
u"-rhx",c",, SIS AT SA T




AW,

P ET

o e

i)

a¥ea s A @

. " a® et LT BT I L P I R RTINS AR N A R Y S A SR -.-'.-_.rff‘(‘(\('-‘ W e T
‘e e ‘\ ‘.I:-.'..\'_ e '.'_'I.'."'."\-' “p ."\{ A PATNAEN e __'-J,-_.\v;,\'. -‘\I‘\l - '\-’-r-‘, -P\ J\-‘\i$\¢ ) . "\.‘\

29

+ 0(62);

3(trAil)trS§
pl(pl+ 1)

1

i sz(dHl)v(dnz) = (trs+trv)~2e?{

0(p; x0(py)

+ (3.14)

2 2
3(tr A22) tr(S22 + V)

p,(P, * 1)

+

.2
4 (tr 4,.H,S,,HZ) v(dH.) v(dH,) +
o(p;) x 0(p,) 127272171 1 2

tr(S22 + V)
P1P;

+2(tr By )(tr Sy )(tr Ay,) } o+ o(e?) .

It therefore follows that for quite general local

alternatives of the type z = Ip + €A considered above, the

dpy
ratio Tl is expressed as
dp
H
0
trS tr(S,,+V)
dpr - (n-1) -1 (erd) )¢ 11)+(trA22)-——Ef§L——-
1_ 2 . 2 2
apT =171 lZZZI [1+ye tr S + tr V
Py
0

(3.15)

+ o(e)]

A
AT
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f ; This means that the LBI test for a specific A can be obtained.
e (trS,.) tr(S,.,+V)
'&'j (trAll)__.&_q,(trAzz).__z.g_._
k: This test rejects H, wh P1 P2 j
is test rejects Hj, when tr S 7 tr vV is
Ry LN
§ large. However, because of its dependence on A, this result
-,
N is not very useful.
: On the other hand, if we consider a subclass of
N3 alternatives of the form | = I, + eA with —o1l . If 822
\ rnative e form = ed wi =
~n P P1 P2
X4 then the coefficient of ¢ in R.H.S. of (3.15) becomes
0y
= a constant and it becomes necessary to look into the
.\'“ .
:j coefficient of €2. This is readily available from the
‘:_"
ot previous calculations and yields the following expression of
Fod .
apr
< H)
- the ratio
v dapt
% H
i 0
L5
g
o
i dpgl 1)/2 1/2 tr 4y
oy = =(n-1) - .
e T 171 Izzzl (1 + ye 5 (3.16)
M dp 1
oy H0
"!
‘u
j\
2 | tr(a2 - 4,8 s a2 S, +V
e 2, ST(A1)= 84585 (8 Syy) (tr Ayoltr(S,, + V)
ad + ¢ {( +
Py P2
N
- 2 2
e tr S,, -1 3(tr All)(tr Sll)
’ﬁ + tr(AZIAlz) ——E———)(trs + trV) T+ ( P.(p. * 1)
VS 2 1'%1
2
-5
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3(era,) (tr(s,,+0)?)

+ p,(p; * 1) *2(trd ) (trS, ) (trd,,) (tr(5,,+V))/p;P,
¢2 _2 2
+ 4 (tr 4, ,H, S, H]) v(dHl)v(dHZ))(trS+trV) } + o(e”)
0(pl)X0(p2)

The locally best invariant test statistic against such
specific local alternatives thus turns out to be the co-
efficient of €2 in the R.H.S. of (3.16). Unfortunately
this again depends heavily on the fixed A. 1In the case when

Aj2 = 0, the coefficient U(say) of e? simplifies to

2 2
(trAll)(trsll) N (trAzz)(tr(522+V))
P, P,

u = 1

J(tes+trv) ™ (3.17)

3(tr Afl)(tr sfl) 3(tr Agz)(tr(s22 + V)2

+

+2(trdy,)(trd, ) (ErS ) (tr(Sy,* V))/plpz}(trs + ch)'2

This still depends on Aj;; and 433. If we restrict Aj) and

A7 to satisfy

tr A tr A

11 _ , = (3.18)

v e e e - R ORI I S N I I oAt ARSI LI IL AP S I
\.,;: \.(_:‘_w‘, At \“f\!' “p .:. ek . el e i '~'\d\"'¢‘\-‘\-‘ N oy "\a'\.':‘l ‘e ..‘:.' A e
. A AaYaY s
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2. = 2 _
and tr All K] tr A22 = Kz(tr All)(trAzz)

for K;, K2 > 0 known, then LBI test statistic turns out to

be )
2 2
.. {3(t‘511’ \ 3tr((522+V) ) +2(trsll)tr(522+v) - (3.19)
-2
(trS + trvV)

The preceding analysis can be summarized as follows.

2

Theorem 3.1: For testing Hy: | = ¢ I, vs Hy: 1 =0 1
+ ¢ |41 O}, € > 0 small, in the model (2.1)-(2.2),

0 oY)
the test which rejects Hg for large V is LBI provided 4))

and Ay satisfy (3.18).

Remark 3.2: The testing problem mentioned in Theorem 3.1

can be regarded as testing sphericity against independence. ' )

Remark 3.3: It is interesting to observe that while the

absence of V in (3.6) makes the corresponding analysis

C e

smooth and leads to an LBI test against very general
local alternatives, its presence changes the problem .

such drastically. The test statistic V is not all
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that desirable because it fails to use the covariance

“

A

. component Sjj.

\

N ’ Remark 3.4: A reasonable test for this problem would be
. m‘f_)

N to reject HO for large values of W = _EI_;_§ where

AN (tr T)

N T = 1811 S12 . This is a generalization of the
N

o

N S21 S22+v

"\

i)

P ,

N locally optimum test statistic —%5-275 when V = 0 to the case
4 r

\

I

when V prevails. It is possible that for some specific A

Py I N

with A1 # 0, W may turn out to be the LBI test statistic.

"

v Remark 3.5: It is not difficult to evaluate the integral
L5 _—_—

. .y 2 . .
¢ (tr A, H,S,,H7)" v(dH,)v(dH,) which appears in
12727211 1 2
0(p;) x 0(p,)

-

< (3.14) and (3.16). Following as in Kariya (1978), and Eaton
Ll

; and Kariya (1983), it can be shown that

v

5

-2 -

. (tr AlZHZSZlHl) \)(dHl)v(dHZ)—c(trAleZI)(trSzlSlz)
: 0(P;) x 0(Py)

h )

(4

% where

&I

\'

T

[ ¢ 2 - ' 2

| pic = J (tr HSHI) v(dHl)v(dHB).
& 0(py) x 0(py)

~

............
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